If it's not what You are looking for type in the equation solver your own equation and let us solve it.
121=49x^2
We move all terms to the left:
121-(49x^2)=0
a = -49; b = 0; c = +121;
Δ = b2-4ac
Δ = 02-4·(-49)·121
Δ = 23716
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{23716}=154$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-154}{2*-49}=\frac{-154}{-98} =1+4/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+154}{2*-49}=\frac{154}{-98} =-1+4/7 $
| x/5-10=11 | | 6z–3z–7=–2+3 | | 5(1.6x+1)=8x+5 | | 4/39x+16/39=20/39 | | 1/7+y=3/7 | | -2/11w=10 | | 8(a-6)=-2(a-1) | | 2x-3=4/3x-31/3 | | 2x-6=3x-2 | | 0=3.50x-450 | | 7/8x-1/4+3/4x=1/16=x | | 75+50x=25+75x= | | (800/x)=10 | | q+-11.4=0.4 | | h+2.7=19.1 | | 2−2s=4/3s+13 | | (x/200)=10 | | w/3=2.45 | | 3x-4=5×+20 | | 9=j/25 | | -8=-5+w | | 24=-6(m+1)-18 | | -10=2(x-2)-4x | | (3x)^(2/3)=16 | | –8+r=–12 | | 6(y+2)−12=72 | | 1/7=24/s+21 | | -3(k+4)=6 | | 3+2y=7y= | | 3(h+-10)=-18 | | 3/8=y/y-20 | | 8x+2=26,4x-6=-26 |